21 世紀(jì),能源與環(huán)境問題備受關(guān)注。傳統(tǒng)的化石能源如石油等資源日漸枯竭,全球人類面臨著能源危機(jī);與此同時(shí),其燃燒過程中會(huì)產(chǎn)生大量氣體和其他污染物,這對(duì)環(huán)境及氣候產(chǎn)生了破壞作用。正是由于能源資源的過度開發(fā),以及大規(guī)模消耗,使得國(guó)際上對(duì)清潔和高效能源的需求不斷增長(zhǎng)。尋求一種可重復(fù)利用,對(duì)環(huán)境友好且能源轉(zhuǎn)換效率高的新能源技術(shù)是急需解決的問題,新能源產(chǎn)業(yè)的研究也得到了各國(guó)政府大量的政策性扶持和財(cái)政支出。
燃料電池被認(rèn)為是最有前景的環(huán)保電源和常規(guī)化石燃料的替代品,而且是在使用 H2 及 CH3OH、CH3CH2OH 等可再生能源方面重要的選擇。作為一種具有巨大潛力的新能源,燃料電池是一種高效、清潔的發(fā)電裝置,可以不斷地通過外界輸入燃料,將化學(xué)能直接轉(zhuǎn)化成電能并持續(xù)向外供電,它還可以緩解能源危機(jī)、緩解電力建設(shè)、減小環(huán)境污染,并且是電力市場(chǎng)發(fā)展和國(guó)防安全等供電保障的需要,因此,有必要發(fā)展其應(yīng)用。
19 世紀(jì)英國(guó)法官和科學(xué)家威廉·羅伯特·格羅夫的工作是燃料電池的起源,格羅夫進(jìn)行的電解實(shí)驗(yàn)被人們稱為燃枓電池的第一個(gè)裝置。中國(guó)的燃料電池研究始于 1958 年,MCFC 的研究最早開始于原電子工業(yè)部天津電源研究所。20 世紀(jì) 70 年代,燃料電池在中國(guó)的研究曾在航天事業(yè)的推動(dòng)下出現(xiàn)出第一次高潮,然而由于各種原因,許多研究在 20 世紀(jì) 70 年代末就止步不前了,這成為中國(guó)的燃料電池技術(shù)與世界先進(jìn)水平差距較大的直接因素。20 世紀(jì) 90 年代初,迅速發(fā)展起來的民用燃料電池,推動(dòng)了中國(guó)燃料電池的研究發(fā)展。
1 燃料電池
燃料電池是一種不斷輸入燃料進(jìn)行化學(xué)反應(yīng),將化學(xué)能直接轉(zhuǎn)化為電能的裝置 [4],燃料通常為甲醇、乙醇、純氫氣、天然氣及汽油等。
離子交換膜燃料電池中,以氫氧為燃料的電池最常見,通過特殊催化劑使燃料與氧發(fā)生反應(yīng)產(chǎn)生二氧化碳和水。這一過程的燃料廉價(jià),化學(xué)反應(yīng)不存在危險(xiǎn),二氧化碳排放量比一般方法低很多,生成的產(chǎn)物水無害,是一種低污染性的能源 [5],這是現(xiàn)今其他動(dòng)力來源望塵莫及的。目前,計(jì)算機(jī)和汽車企業(yè)開始著力于開發(fā)燃料電池以替代傳統(tǒng)的電池電源,汽車領(lǐng)域中燃料電池的應(yīng)用,已成為能源發(fā)展的必然趨勢(shì) [6]。
圖 1 燃料電池工作原理示意
作為一種能量轉(zhuǎn)化裝置,燃料電池是按照原電池工作原理,直接將燃料和氧化劑中儲(chǔ)存的化學(xué)能轉(zhuǎn)化為電能,其反應(yīng)實(shí)質(zhì)是氧化還原反應(yīng),工作原理如圖 1 所示。
燃料電池主要由陽極、陰極、電解質(zhì)和外部電路 4 部分組成,其陽極和陰極分別通入燃料氣和氧氣(空氣),陽極上燃料氣放出電子,外電路傳導(dǎo)電子到陰極并與氧化氣結(jié)合生成離子,在電場(chǎng)作用下,離子通過電解質(zhì)轉(zhuǎn)移到陽極上再與燃料氣進(jìn)行反應(yīng),最后形成回路產(chǎn)生電。與此同時(shí),因?yàn)槿剂献陨淼姆磻?yīng)及電池存在的內(nèi)阻,燃料電池也要排出一定的熱量,以保持電池恒定的工作溫度。從外表上看像一個(gè)蓄電池,但實(shí)質(zhì)上它不能「儲(chǔ)電」而是一個(gè)「發(fā)電廠」。
其中,陰陽極不僅可以傳導(dǎo)電子,還能作為氧化還原反應(yīng)的催化劑。為便于反應(yīng)氣體的通入和產(chǎn)物的排出,兩極往往采用多孔結(jié)構(gòu)。電解質(zhì)則主要起到傳遞離子和分離燃料氣、氧化氣的作用,一般情況下為致密結(jié)構(gòu)。
燃料電池作為一個(gè)轉(zhuǎn)換裝置,僅僅是將存儲(chǔ)于燃料物質(zhì)中的化學(xué)能轉(zhuǎn)換成電能 [7]。從原則上講,只要接連不斷地供給化學(xué)燃料,燃料電池就可以持續(xù)不斷的發(fā)電,這是繼核電、水力、火力之后的第 4 代發(fā)電技術(shù)。
燃料電池成為國(guó)內(nèi)外企業(yè)的關(guān)注熱點(diǎn),這主要是源于它自身的優(yōu)點(diǎn):
能量轉(zhuǎn)化效率高;
燃料選擇范圍廣;
清潔、污染少;
噪聲低;
比能量高、可靠性強(qiáng);
負(fù)荷響應(yīng)快,具有超強(qiáng)的適用能力。
盡管燃料電池?fù)碛腥绱硕辔说膬?yōu)勢(shì),可它在運(yùn)行推廣過程中仍然有一些不足,主要存在的問題是 [9]:
成本較高;
功率密度仍需提高;
燃料的存儲(chǔ);
對(duì)于環(huán)境毒性比較敏感;
有限的工作溫度兼容性。
目前,應(yīng)用得較多是質(zhì)子交換膜燃料電池和堿性燃料電池。質(zhì)子交換膜燃料電池(PEMFC)是近些年快速發(fā)展起來的新一代燃料電池,具有較高的能量效率和能量密度、體積重量小、啟動(dòng)速度最快、運(yùn)行安全可靠、應(yīng)用最為廣泛等優(yōu)點(diǎn),特別是在汽車方面應(yīng)用較為深廣,PEMFC 是正在開發(fā)的商用燃料電池。
而最早參與實(shí)際應(yīng)用的燃料電池是堿性燃料電池(AFC),在 Apollo 飛船中應(yīng)用的 AFC 不僅為飛船提供了動(dòng)力,還為宇航員提供了飲用水。其電解質(zhì)主要是氫氧化鉀/氫氧化鈉水溶液,可以使用較為廉價(jià)的催化劑如鐵、鎳、銀及一些金屬氧化物代替貴金屬催化劑(鉑等),因此材料成本較低。
2 質(zhì)子交換膜燃料電池
2.1 質(zhì)子交換膜燃料電池工作原理
從本質(zhì)上說,PEMFC 是電解水的一個(gè)「逆」裝置。電解水過程是利用外加電源使水發(fā)生電解,從而產(chǎn)生氫和氧;然而,燃料電池則是氫和氧發(fā)生電化學(xué)反應(yīng)產(chǎn)生水,同時(shí)生產(chǎn)出電的過程。所以燃料電池的結(jié)構(gòu)特征與電解水裝置是如出一轍的,它主要由陽極、陰極、電解質(zhì)和外部電路組成。
PEMFC 中陽極為氫電極,陰極為氧電極,陰陽極都含有一定量用來加速電極上發(fā)生電化學(xué)反應(yīng)的催化劑,兩極之間以質(zhì)子交換膜作為電解質(zhì)。
當(dāng)氫氣與氧氣分別通入陽極和陰極時(shí),進(jìn)入陽極的氫氣在催化劑作用下離化成氫離子和電子:
電子經(jīng)外電路轉(zhuǎn)移到陰極,氫離子則經(jīng)質(zhì)子交換膜到達(dá)陰極。陰極的氧氣與氫離子及電子反應(yīng)生成水分子:
其中產(chǎn)生的水不會(huì)稀釋電解質(zhì),卻是隨著尾氣通過電極排出。
因此,PEMFC 的電化學(xué)反應(yīng)為
2.2 PEMFC關(guān)鍵部件
質(zhì)子交換膜的關(guān)鍵部件:質(zhì)子交換膜(CEM)、電催化劑和雙極板。
1)質(zhì)子交換膜
PEMFC 以 CEM 為電解質(zhì),作為其核心部件,CEM 需具備好的穩(wěn)定性、優(yōu)異的抗電化學(xué)氧化性、高的機(jī)械性能和電導(dǎo)率等特征,應(yīng)用較多的就是杜邦公司生產(chǎn)的商業(yè)化全氟磺酸膜(Nafion 膜)。多種聚合物材料包括聚醚砜(PES)、聚醚酮(PEK)、聚苯并咪唑(PBI)、聚酰亞胺(PI)、聚亞苯基,聚對(duì)苯二甲酸乙二醇酯、聚磷腈和聚偏二氟乙烯(PVDF)可作為 CEM 的主鏈。此外,已證實(shí)聚合物離聚物結(jié)構(gòu)的變化明顯影響著 CEM 的總體性能。許多文獻(xiàn)報(bào)道過主鏈 CEM,嵌段 CEM,側(cè)鏈型 CEM,梳型 CEM 和致密官能化 CEM。
增強(qiáng) CEM 的陽離子電導(dǎo)率的最有效方法之一是在膜基質(zhì)中構(gòu)建相互連接的陽離子導(dǎo)電通道。官能化鏈段和未官能化鏈段之間的親水/疏水區(qū)分導(dǎo)致納米級(jí)的相分離。CEM 最初是從主鏈結(jié)構(gòu)開發(fā)的,其中陽離子基團(tuán)直接連接到?jīng)]有間隔基的聚合物主鏈上。這種類型的 CEM 主要通過化學(xué)穩(wěn)定的主鏈的后磺化或磺化單體的共聚制備。聚縮合是通過親核機(jī)制實(shí)現(xiàn)芳族 CEM 的共聚反應(yīng),除了親核機(jī)制,徐銅文等 [10] 探索了通過親電機(jī)制的一條簡(jiǎn)易路線,以獲得磺化聚合物。將二芳烴單體和二羧酸酸性單體在溫和條件下的聚?;ㄟ^一步醚化以高產(chǎn)率合成磺化芳族 PEK。此外,通過提供另一種 3, 3', 4, 4'-四氨基單體,PEK/PBI 的共聚物可以通過聚?;磻?yīng)在一鍋中合成 [11]。
嵌段聚合物 CEM 可以分為 2 類:(1)典型的嵌段聚合物由具有不同組成的 2 個(gè)或 3 個(gè)鏈段組成;(2)少數(shù)親水和疏水鏈段交替排列以構(gòu)建多嵌段聚合物。前者可以通過由大分子引發(fā)劑引發(fā)的苯乙烯的原子轉(zhuǎn)移自由基聚合(ATRP)制備 [12],也可以通過芳族單體的可控縮聚實(shí)現(xiàn)。李南文課題組首先報(bào)道了通過利用封端在聚亞芳基醚砜(PAES)上的單酚鹽封端的聚苯基氧化物(PPO)低聚物制備芳族 ABS 三嵌段共聚物 [13]。
受 Nafion 膜結(jié)構(gòu)的啟發(fā),制備側(cè)鏈型 CEMs 以改善磺酸基團(tuán)的移動(dòng)性,其對(duì)于構(gòu)建明確的相分離微觀形態(tài)是至關(guān)重要的。在聚合物主鏈上引入側(cè)鏈的常規(guī)方法是使酚基與 1,3-丙磺酸內(nèi)酯,1, 4-丁烷磺內(nèi)酯或 6-溴己基磺酸鈉反應(yīng)。徐銅文等 [14] 報(bào)道了側(cè)鏈型預(yù)磺化單體通過聚?;磻?yīng)的聚合。
促進(jìn)微相分離的另一種有效方法是將具有致密聚集的陽離子基團(tuán)的各種單體引入聚合物主鏈。另外,CEM 需要足夠的機(jī)械和尺寸穩(wěn)定性。交聯(lián)則是改善這些性能的最佳策略,交聯(lián) CEM 可以通過加熱容易地實(shí)現(xiàn)?;撬峄鶊F(tuán)可以在高溫 100℃ 下與芳族化合物的活化氫原子的縮合反應(yīng)。此外,磺酸基團(tuán)與苯并咪唑環(huán) [15]、咪唑環(huán) [16]、吡啶鎓環(huán) [17] 的酸堿交聯(lián)也可有助于改善 CEM 的機(jī)械性能和尺寸穩(wěn)定性。
2)電催化劑
由于 PEMFC 在強(qiáng)酸性環(huán)境中工作,Pt 具有良好的離解吸附分子能力,但由于使用鉑系作為催化劑,限制了它的應(yīng)用。電催化劑作為 PEMFC 的關(guān)鍵材料,必須滿足以下特征:優(yōu)良的催化性能、電化學(xué)穩(wěn)定性、導(dǎo)電性,這使得催化劑嚴(yán)重依賴 Pt 基貴金屬。由于 Pt 價(jià)格昂貴、資源匱乏,降低 Pt 基催化劑的負(fù)載量、探索非鉑催化劑就成為新的研究重點(diǎn)。
金屬 Pd 被視為最有前景的鉑替代金屬 [18],但 Pd 基催化劑的催化活性遠(yuǎn)比不上鉑基催化劑,仍然無法達(dá)到商業(yè)化的使用要求。Xu 等 [19] 通過調(diào)節(jié)其表面結(jié)構(gòu)和制備 Pd 合金,合成了含多種活性組分的高分散鈀基合金催化劑,并在催化氧還原反應(yīng)(ORR)中顯示了可與鉑基催化劑相媲美的效果。
非貴金屬催化劑主要包括金屬-氮-碳催化劑、過渡金屬氧化物、硫?qū)倩衔?、金屬氧氮化合物和金屬碳氮化合物。因過渡金屬-氮-碳化合物(M/N/C)具有可觀的 ORR 催化活性(在酸性介質(zhì)中)、抗甲醇、低成本、壽命長(zhǎng)和環(huán)境友好等特點(diǎn),被認(rèn)為是最具潛力代替鉑基催化劑的非貴金屬燃料電池催化劑之一 [20]。
非金屬催化劑主要是由各種雜原子摻雜的納米碳材料,包括硼摻雜、氮摻雜、磷摻雜、硫摻雜以及多原子的雙摻雜或三摻雜。丁煒等 [21] 利用蒙脫土作為扁平納米反應(yīng)器選擇性制備平面氮摻雜的石墨烯,可有效地提高催化活性位的密度,增加反應(yīng)界面。但是由于缺少傳質(zhì)通道,在制備成膜電極(MEA)后其活性位暴露的概率大大降低,影響了電池的性能。于是在此基礎(chǔ)上,又進(jìn)一步開發(fā)了一種基于形態(tài)控制轉(zhuǎn)換納米聚合物制備高效氧還原碳納米材料催化劑的方法——「NaCl 重結(jié)晶固型熱解法」[22]。
3)雙極板
雙極板主要起到支撐、阻氣、集流和導(dǎo)電作用。廣泛應(yīng)用的雙極板有:石墨板、金屬板和復(fù)合雙極板。
2.3 PEMFC 發(fā)展中存在的問題
PEMFC 在發(fā)展過程中存在以下幾類問題:
成本問題:PEMFC 的成本問題是多方面引起的,首先,由于其工作條件是強(qiáng)酸性環(huán)境,必須使用昂貴的Pt作為催化劑;其次,現(xiàn)今使用較多的電解質(zhì)膜是性能好的商業(yè) Nafion 膜,這就極大提高了 PEMFC的生產(chǎn)成本。
氫源問題:PEMFC 最理想的燃料是純氫,但氫氣是最輕的氣體,其儲(chǔ)存和運(yùn)輸不易。
2025-01-08 10:04
2025-01-08 10:00
2025-01-08 09:58
2025-01-07 09:38
2025-01-06 09:04
2025-01-06 08:59
2025-01-01 20:12
2025-01-01 20:07
2024-12-29 08:55
2024-12-29 08:45