鈉硫電池能量密度和轉(zhuǎn)換效率高,是一種能夠同時適用于功率型儲能和能量型儲能的蓄電池,自2003年起,日本和美國相繼建設(shè)了多個兆瓦級的鈉硫電池儲能電站。不過鈉硫電池的制造比較困難,對電池材料、電池結(jié)構(gòu)要求高,因此制造成本較高。鈉硫電池在使用時對運行條件的要求苛刻,必須維持在300~350℃,需要附加供熱設(shè)備來維持溫度。另外,電池運行的控制也比較困難,例如在線測量充放電狀態(tài)不能做到很準確,必須周期性地進行離線度量;安全性相對也稍差。由于鈉硫電池產(chǎn)品的制造比較困難,目前只有少量的鈉硫電池產(chǎn)品已經(jīng)商業(yè)化。前幾年,上海市電力公司與中科院上海硅酸鹽研究所聯(lián)合開發(fā)出大容量鈉硫電池,其關(guān)鍵技術(shù)和關(guān)鍵工藝已取得重大突破,但是關(guān)鍵裝備和工業(yè)化生產(chǎn)仍存在巨大差距,國內(nèi)鈉硫電池儲能技術(shù)和應(yīng)用在短期內(nèi)還很難取得突破。
鈉硫電池具有許多特色之處:一個是比能量(即電池單位質(zhì)量或單位體積所具有的有效電能量)高,其理論比能量為760Wh/Kg。另一個是可大電流、高功率放電。其放電電流密度一般可達200-300mA/cm2,并瞬時間可放出其3倍的固有能量;再一個是充放電效率高。由于采用固體電解質(zhì),所以沒有通常采用液體電解質(zhì)二次電池的那種自放電及副反應(yīng),充放電電流效率幾乎100%。當然,事物總是一分為二的,鈉硫電池也有不足之處,其工作溫度在300-350℃,所以,電池工作時需要一定的加熱保溫。但采用高性能的真空絕熱保溫技術(shù),可有效地解決這一問題。
|空氣電池
鋰空氣電池是一種用鋰作陽極,以空氣中的氧氣作為陰極反應(yīng)物的電池。
放電過程:陽極的鋰釋放電子后成為鋰陽離子(Li+),Li+穿過電解質(zhì)材料,在陰極與氧氣、以及從外電路流過來的電子結(jié)合生成氧化鋰(Li2O)或者過氧化鋰(Li2O2),并留在陰極。鋰空氣電池的開路電壓為2.91V。
新型鋰空氣電池在空氣中以0.1A/g的放電率進行放電時,放電能約為9000mAh/g。以前的鋰空氣電池的放電能僅為700~3000mAh/g,可以說實現(xiàn)了能的大幅增加。另外,充電能也達到約9600mAh/g。如果使用水溶液取代水溶性凝膠,便可在空氣中連續(xù)放電20天,其放電能約為50000mAh/g,比原來約高10倍。由于鋰空氣電池的能量原本就比鋰離子電池約高10倍,因此使用新技術(shù)后共比鋰離子電池約高100倍。
雖然鋰空氣電池有明顯優(yōu)點,但缺點也很突出,距離大規(guī)模商業(yè)化還有一定距離。電池的反應(yīng)產(chǎn)物過氧化鋰及反應(yīng)中間的產(chǎn)物超氧化鋰都有較高的反應(yīng)活性,會分解電解液,因此幾個充放電循環(huán)后電池電量就會急劇下降,電池壽命較短;由于過氧化鋰導(dǎo)電性能差,充電時很難分解,需要很高的充電電壓,這還會導(dǎo)致分解電解液及碳電極等副作用。放電時,過氧化鋰會堵塞多孔碳電極,導(dǎo)致放電提前結(jié)束;充電時,鋰金屬負極表面會呈樹枝狀向正極生長,最終可能導(dǎo)致短路,存在安全隱患;鋰金屬與空氣中的水蒸氣、氮氣、二氧化碳都會發(fā)生反應(yīng),導(dǎo)致負極材料消耗,最終使電池失效。
|飛輪電池
飛輪電池是20世紀90年代提出的新概念電池,它突破了化學(xué)電池的局限,用物理方法實現(xiàn)儲能。
飛輪電池中有一個電機,充電時該電機以電動機形式運轉(zhuǎn),在外電源的驅(qū)動下,電機帶動飛輪高速旋轉(zhuǎn),即用電給飛輪電池"充電"增加了飛輪的轉(zhuǎn)速從而增大其功能;放電時,電機則以發(fā)電機狀態(tài)運轉(zhuǎn),在飛輪的帶動下對外輸出電能,完成機械能(動能)到電能的轉(zhuǎn)換。當飛輪電池發(fā)出電的時,飛輪轉(zhuǎn)速逐漸下降,轉(zhuǎn)速極高(高達200000r/min,使用的軸承為非接觸式磁軸承。據(jù)稱,飛輪電池比能量可達150W·h/kg,比功率達5000-10000W/kg,使用壽命長達25年,可供電動汽車行駛500萬公里。美國飛輪系統(tǒng)公司已用最新研制的飛輪電池成功地把一輛克萊斯勒LHS轎車改成電動轎車,一次充電可行駛600km,由靜止到96km/h加速時間為6.5秒。
"飛輪"這一儲能元件,已被人們利用了數(shù)千年,主要是利用它的慣性來均衡轉(zhuǎn)速和闖過"死點",由于它們的工作周期都很短,每旋轉(zhuǎn)一周時間不足一秒鐘,在這樣短的時間內(nèi),飛輪的能耗是可以忽略的?,F(xiàn)在想利用飛輪來均衡周期長達12~24小時的能量,飛輪本身的能耗就變得非常突出了。能耗主要來自軸承摩擦和空氣阻力。人們曾通過改變軸承結(jié)構(gòu),如變滑動軸承為滾動軸承、液體動壓軸承、氣體動壓軸承等來減小軸承摩擦力,通過抽真空的辦法來減小空氣阻力,軸承摩擦系數(shù)已小到10-3。即使如此微小,飛輪所儲的能量在一天之內(nèi)仍有25%被損失,仍不能滿足高效儲能的要求。
近年來,飛輪儲能技術(shù)取得突破性進展是基于下述三項技術(shù)的飛速發(fā)展:一是高能永磁及高溫超導(dǎo)技術(shù)的出現(xiàn);二是高強纖維復(fù)合材料的問世;三是電力電子技術(shù)的飛速發(fā)展。
超導(dǎo)磁懸浮原理是這樣的:當我們將一塊永磁體的一個極對準超導(dǎo)體,并接近超導(dǎo)體時,超導(dǎo)體上便產(chǎn)生了感應(yīng)電流。該電流產(chǎn)生的磁場剛好與永磁的磁場相反,于是二者便產(chǎn)生了斥力。由于超導(dǎo)體的電阻為零,感生電流強度將維持不變。若永磁體沿垂直方向接近超導(dǎo)體,永磁體將懸空停在自身重量等于斥力的位置上,而且對上下左右的干擾都產(chǎn)生抗力,干擾力消除后仍能回到原來位置,從而形成穩(wěn)定的磁懸浮。若將下面的超導(dǎo)體換成永磁體,則兩永磁體之間在水平方向也產(chǎn)生斥力,故永磁懸浮是不穩(wěn)定的。
利用超導(dǎo)這一特性,我們可以把具有一定質(zhì)量的飛輪放在永磁體上邊,飛輪兼作電機轉(zhuǎn)子。當給電機充電時,飛輪增速儲能,變電能為機械能;飛輪降速時放能,變機械能為電能。飛輪儲能大小除與飛輪的質(zhì)量(重量)有關(guān)外,還與飛輪上各點的速度有關(guān),而且是平方的關(guān)系。因此提高飛輪的速度(轉(zhuǎn)速)比增加質(zhì)量更有效。但飛輪的轉(zhuǎn)速受飛輪本身材料限制。轉(zhuǎn)速過高,飛輪可能被強大的離心力撕裂。故采用高強度、低密度的高強復(fù)合纖維飛輪,能儲存更多的能量。目前選用的碳纖維復(fù)合材料,其輪緣線速度可達1000米/秒,比子彈速度還要高。正是由于高強復(fù)合材料的問世,飛輪儲能才進入實用階段。
2024-10-21 09:45
2024-10-21 08:27
2024-10-16 11:29
2024-10-14 09:19
2024-10-14 08:46
2024-10-13 12:05
2024-10-11 11:57
2024-10-10 10:00
2024-10-09 10:05
2024-10-08 11:01