網(wǎng)易科技訊7月21日消息,《哈佛商業(yè)評論》(HBR)發(fā)布文章稱,人工智能的商業(yè)應用將主要集中在兩個領域:供應鏈管理/制造以及營銷與銷售。
以下是文章主要內(nèi)容:
雖然人工智能在企業(yè)中的總體普及度仍然偏低(在我們上次研究中大約是20%),但高管們知道人工智能并不只是炒作。各個行業(yè)的組織都在密切關注這項技術,看看它對他們的業(yè)務能起到什么作用。它們也應該這么做,據(jù)我們估計,今天分析技術所創(chuàng)造的潛在價值有40%來自于被稱作“深度學習”(利用多層人工神經(jīng)網(wǎng)絡)的人工智能技術??偟膩碚f,我們估計深度學習一年可產(chǎn)生的價值在3.5萬億到5.8萬億美元之間。
然而,許多商業(yè)領袖仍然不確定他們應該在哪里應用人工智能才能獲得最大的回報。畢竟,將人工智能嵌入整個業(yè)務需要在人才招募和技術堆棧的升級上進行巨額的投資,也需要采取徹底的變革舉措,以確保人工智能能夠帶來實質(zhì)性的價值,無論是幫助作出更好的決策,還是改善面向消費者的應用程序。
通過對橫跨19個行業(yè)和9個業(yè)務職能的400多個人工智能實際用例的深入研究,我們發(fā)現(xiàn)用一句古老的格言來回答該在哪里部署人工智能的問題最合適不過,它就是:“跟著錢走”。
傳統(tǒng)上給公司帶來最大價值的業(yè)務領域,往往是人工智能能夠產(chǎn)生最大影響的領域。例如,在零售組織中,營銷和銷售往往會帶來巨大的價值。我們的研究表明,僅在客戶數(shù)據(jù)上利用人工智能來進行個性化促銷,實體零售商的增量銷售額就會增加1-2%。相比之下,在高端制造業(yè)中,運營往往能帶來最大的價值。在這里,人工智能可以根據(jù)需求的潛在因果驅(qū)動因素而不是先前的結果進行預測,從而將預測精度提高10-20%。這意味著庫存成本可能減少5%,收入可能增加2-3%。
雖然人工智能的應用涵蓋了各種各樣的職能領域,但實際上,在這兩個交叉領域——供應鏈管理/制造以及營銷與銷售——我們認為人工智能能夠在幾個行業(yè)發(fā)揮出最大的威力,至少目前來看是這樣。綜合起來,我們估計這些用例占整個人工智能機會的三分之二以上。
人工智能可以在全球企業(yè)的營銷和銷售中創(chuàng)造1.4- 2.6萬億美元的價值,可以在供應鏈管理和制造中創(chuàng)造1.2- 2萬億美元的價值(部分價值歸企業(yè)所有,部分價值歸客戶所有)。在制造業(yè)中,來自人工智能的最大價值源自于使用它來進行預測性維護(在全球的企業(yè)中創(chuàng)造大約0.5- 0.7萬億美元)。人工智能能夠處理包括音頻和視頻在內(nèi)的大量數(shù)據(jù),意味著它可以快速識別異常狀況來防止出現(xiàn)故障,無論是飛機發(fā)動機發(fā)出的奇怪聲音,還是傳感器檢測到的裝配線故障。
企業(yè)領導者判斷該在哪里部署人工智能的另一種途徑是,看看那些已經(jīng)在利用傳統(tǒng)分析技術的職能部門。我們發(fā)現(xiàn),在讓人工智能能夠創(chuàng)造出最大潛在價值的用例中,神經(jīng)網(wǎng)絡技術可以比現(xiàn)有的分析技術表現(xiàn)得更好,或者產(chǎn)生額外的洞見和應用。在我們的研究中,69%的人工智能用例都是如此。
在只有16%的用例中,我們發(fā)現(xiàn)了適用于其他分析技術沒有效果的地方的“greenfield”人工智能解決方案。(隨著算法變得更加通用,它們變得可行所需的各種數(shù)據(jù)變得更容易獲得,深度學習用例的數(shù)量可能會增加快速,而“greenfield”深度學習用例的占比則可能不會顯著提升,因為更加成熟的機器學習技術也有潛力變得更好,更普遍。)
即便我們看到人工智能技術的使用具有經(jīng)濟潛力,我們也認識到人工智能實施的切實障礙和局限性。獲取足夠大和足夠全面的數(shù)據(jù)集,以滿足深度學習對訓練數(shù)據(jù)的巨大胃口,是一個重大挑戰(zhàn)。人們對此類數(shù)據(jù)的使用方式也日益感到擔憂,因此這同樣是企業(yè)需要應對的挑戰(zhàn),安全性、隱私以及將人類的偏見傳遞給人工智能算法的可能性等問題都需要得到解決。在醫(yī)療和保險等一些行業(yè),企業(yè)還必須設法用簡單的語言給監(jiān)管結構解釋清楚人工智能得出的分析結果:為什么這臺機器會得出這個答案?好消息是,這些技術本身正在進步,并開始解決其中的一些局限性。
除了這些局限性之外,企業(yè)在采用人工智能時還可能在組織機構上面臨更為棘手的挑戰(zhàn)。掌握技術需要新的專業(yè)知識水平,而流程則可能會成為技術被成功采用的主要障礙。企業(yè)將不得不開發(fā)出穩(wěn)健的數(shù)據(jù)維護和治理流程,并專注于“第一公里”——如何獲取和組織數(shù)據(jù)和努力——以及更困難的“最后一公里”,即如何將人工智能模型的輸出集成到整個工作流程,從臨床試驗經(jīng)理和銷售經(jīng)理到采購人員。
盡管企業(yè)在部署人工智能時必須保持警惕和負責,但鑒于該技術的規(guī)模以及其對企業(yè)、消費者和社會的有益影響,它非常值得去深入研究。這種追求并不簡單,但可以先從遵循一個簡單的概念做起:跟著錢走。(樂邦)
2024-10-23 09:13
2024-10-21 14:35
2024-10-21 09:45
2024-10-21 08:27
2024-10-16 11:29
2024-10-14 09:19
2024-10-14 08:46
2024-10-13 12:05
2024-10-11 11:57
2024-10-10 10:00